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Chern-Moser-Weyl Tensor and Embeddings
into Hyperquadrics

Xiaojun Huang∗ and Ming Xiao

Dedicated to our friend Dick Wheeden

1 Introduction

A central problem in Mathematics is the classification problem. Given a set of objects and
an equivalence relation, loosely speaking, the problem asks how to find an accessible way
to tell whether two objects are in the same equivalence class. A general approach to this
problem is to find a complete set of (geometric, analytic or algebraic) invariants. In the
subject of Several Complex Variables and Complex Geometry, a fundamental problem is to
classify complex manifolds or more generally, normal complex spaces under the action of bi-
holomorphic transformations. When the normal complex spaces are open and have strongly
pseudo-convex boundary, by the Fefferman-Bochner theorem, one needs only to classify the
corresponding boundary strongly pseudoconvex CR manifolds under the application of CR
diffeomorphisms. The celebrated Chern-Moser theory is a theory which gives two different
constructions of a complete set of invariants for such a classification problem. Among vari-
ous aspects of the Chern-Moser theory (especially the geometric aspect of the theory), the
Chern-Moser-Weyl tensor plays a key role. However, this trace-free tensor is defined in a
very complicated manner. This makes it hard to apply in the applications. The majority
of first several sections in this article surveys some work done in papers of Chern-Moser
[CM], Huang-Zhang [HZh], Huang-Zaitsev [HZa]. Here, we give a simple and more acces-
sible account on the Chern-Moser-Weyl tensor. We also make an immediate application of
the monotonicity property for this tensor to the study of CR embedding problem for the
positive signature case.
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In the last section of this paper, we present new materials. We will show that the
family of compact strongly pseudo-convex algebraic hypersurfaces constructed in [HLX]
cannot be locally holomorohically embedded into a sphere of any dimension. The argument
is based on the rationality result established in [HLX] and the Segre geometry associated
with such a family. This gives a negative answer to a long standing folklore conjecture
concerning the embeddability of compact strongly pseudo-convex algebraic hypersurfaces
into a sphere of sufficiently high dimension. For an extensive discussion on the history on
the CR embeddability into spheres, we refer the reader to the introduction section of a recent
joint paper of the first author with Zaistev [HZa].

2 Chern-Moser-Weyl tensor for a Levi non-degenerate

hypersurface

In this article, we assume that the CR manifolds under consideration are already embedded
as hypersurfaces in the complex Euclidean spaces. We first consider the case where the
manifolds are even Levi non-degenerate.

We use (z, w) ∈ Cn × C for the coordinates of Cn+1. We always assume that n ≥ 2,
for otherwise the Chern-Moser-Weyl tensor is identically zero. In that setting, one has to
consider the Cartan curvature functions instead, which we will not touch in this article.

Let M be a smooth real hypersurface. We say that M is Levi non-degenerate at p ∈M
with signature ℓ ≤ n/2 if there is a local holomorphic change of coordinates, that maps p
to the origin, such that in the new coordinates, M is defined near 0 by an equation of the
form:

r = v − |z|2ℓ + o(|z|2 + |zu|) = 0 (1)

Here, we write u = ℜw, v = ℑw and < a, b̄ >ℓ= −
∑

j≤ℓ aj b̄j +
∑n

j=ℓ+1 aj b̄j , |z|
2
ℓ =< z, z̄ >ℓ .

When ℓ = 0, we regard
∑

j≤ℓ aj = 0.
Assume thatM is Levi non-degenerate with the same signature ℓ at any point inM . For

a point p ∈ M , a real non-vanishing 1-form θp at p ∈ M is said to be appropriate contact

form at p if θp annihilates T
(1,0)
p +T

(0,1)
p M and the Levi form Lθp associated with θp at p ∈M

has ℓ negative eigenvalues and n − ℓ positive eigenvalues. Here we recall the definition of
the Levi-form Lθp at p as follows: We first extend θp to a smooth 1-form θ near p such that

θ|q annihilates T
(1,0)
q + T

(0,1)
q M at any point q ≈ p. For any Xα, Xβ ∈ T

(1,0)
p , we define

Lθp(Xα, Xβ) := −i < dθ|p, Xα ∧Xβ > . (2)
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One can easily verify that Lθp is a well-defined Hermitian form in the tangent space of type
(1, 0) of M at p, which is independent of the choice of the extension of the 1-form θ. In
the literature, any smooth non-vanishing 1-form θ along M is called a smooth contact form,
if θ|q annihilates T

(1,0)
q M for any q ∈ M . If θ|q is appropriate at q ∈ M , we call θ an

appropriate smooth contact 1-form along M . Write Ep for the set of appropriate contact
1-forms at p defined above, and E for the disjoint union of Ep. Then two elements in Ep

are proportional by a positive constant for the case of ℓ < n/2; and are proportional by a
non zero constant when ℓ = n/2. There is a natural smooth structure over E which makes
E into a R+ fiber bundle over M when ℓ < n/2, or a R∗-bundle over M when ℓ = n/2.
When M is defined near 0 by an equation of the form as in (1), then i∂r is an appropriate
contact form of M near 0. In particular, for any appropriate contact 1-form θ0 at 0 ∈ M ,
there is a constant c 6= 0 such that θ0 = ic∂r|0. And c > 0 when ℓ < n/2. Applying
further a holomorphic change of coordinates (z, w) → (

√
|c|z, cw) and the permutation

transformation (z1, · · · , zn, w) → (zn, · · · , z1, w) if necessary, we can simply have θ0 = i∂r|0.
Assign the weight of z, z to be 1 and that of u, v, w to be 2. We say h(z, z, u) = owt(k) if
h(tz,tz,t2u)

tk
→ 0 uniformly on compact sets in (z, u) near the origin. We write h(k)(z, w) for a

weighted homogeneous holomorphic polynomial of weighted degree k and h(k)(z, z, u) for a
weighted homogeneous polynomial of weighted degree k. We first have the following special
but crucial case of the Chern-Moser normalization theorem:

Proposition 2.1 Let M ⊂ Cn × C be a smooth Levi non-degenerate hypersurface. Let
θp ∈ Ep be an appropriate real 1-form at p ∈M . Then there is a biholomorphic map F from
a neighborhood of p to a neighborhood of 0 such that F (p) = 0 and F (M) near 0 is defined
by an equation of the following normal form (up to fourth order):

r = v − |z|2ℓ +
1

4
s(z, z̄) +R(z, z, u) = v − |z|2ℓ +

1

4

∑
s0αβ̄γδ̄zαz̄βzγ z̄δ +R(z, z, u) = 0. (3)

Here s(z, z) =
∑
s0
αβ̄γδ̄

zαz̄βzγ z̄δ, s
0
αβ̄γδ̄

= s0
γβ̄αδ̄

= s0
γδ̄αβ̄

, s0
αβ̄γδ̄

= s0βᾱδγ̄ and

n∑

α,β=1

s0αβ̄γδ̄g
β̄α
0 = 0 (4)

where gβ̄α0 = 0 for β 6= α, gβ̄β0 = 1 for β > ℓ, gβ̄β0 = −1 for β ≤ ℓ. Also R(z, z, u) =
owt(|(z, u)|

4) ∩ o(|(z, u)|4). Moreover, we have i∂r|0 = (F−1)∗θp.

Proof of Proposition 2.1: By what we discussed above, we can assume that p = 0 and M
near p = 0 is defined by an equation of the form as in (1). We first show that we can get rid
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of all weighted third order degree terms. For this purpose, we choose a transformation of
the form f = z+f (2)(z, w) and g = w+g(3)(z, w). Suppose that F = (f1, · · · , fn, g) = (f, g)
maps (M, p = 0) to a hypersurface near 0 defined by an equation of the form as in (1)
but without weighted degree 3 terms in the right hand side. Substituting F into the new
equation and comparing terms of weighted degree three, we get

ℑ
(
g(3) − 2i < z, f (2) >ℓ

)
|w=u+i|z|ℓ = G(3)(z, z, u)

where G(3) is a certain given real-valued polynomial of weighted degree 3 in (z, z, u). Write

G(3)(z, z, u) = ℑ{a(1)(z)w+
∑n

j=1 b
(2)
j (z)zj}. Choosing g

(3) = a(1)(z)w and f
(2)
j = i

2
b
(2)
j (z), it

then does our job.
Next, we choose a holomorphic transformation of the form f = z + f (3)(z, w) and g =

w+g(4)(z, w) to simplify the weighted degree 4 terms in the defining equation of (M, p = 0).
Suppose that M is originally defined by

r = v − |z|2ℓ + A(4)(z, z, u) + owt(4) = 0

and is transformed to an equation of the form:

r = v − |z|2ℓ +N (4)(z, z, u) + owt(4) = 0.

substituting the map F and collecting terms of weighted degree 4, we get the equation:

ℑ
(
g(4) − 2i < z, f (3) >ℓ

)
|w=u+i|z|ℓ = N (4)(z, z, u)−A(4)(z, z, u).

Now, we like to make N (4) as simple as possible by choosing F . Write

−A(4) = ℑ{b(4)(z) + b(2)(z)u+ b(0)u2 +

n∑

j=1

c
(3)
j (z)zj +

∑

|α|=|β|=2

c̃αβz
αzβ}.

Let

X(4)(z, w) = b(4)(z) + b(2)(z)w + b(0)w2, −2iδjℓY
(3)
j (z, w) = c

(3)
j (z)− ib(2)(z)zj − 2ib(0)zjw,

Y (3) = (Y
(3)
1 , · · · , Y (3)

n ),

where δjℓ is 1 for j > ℓ and is −1 otherwise. Then ℑ
(
Y (4) − 2i < z,X(3) >ℓ

)
+A(4)(z, z, u) =

−ℑ(b(0))|z|4ℓ +
∑

|α|=|β|=2 dαβz
αzβ . By the Fischer decomposition theorem ([SW]), write in

the unique way

−ℑ(b(0))|z|4ℓ +
∑

|α|=|β|=2

dαβz
αzβ = h(2)(z, z)|z|ℓ + h(4)(z, z).
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Here h(2)(z, z) and h(4)(z, z) are real-valued, bi-homogeneous in (z, z) and ∆ℓh
(4)(z, z) = 0.

Here, we write △ℓ = −
∑

j≤ℓ
∂2

∂zj∂z̄j
+
∑n

j=ℓ+1
∂2

∂zj∂z̄j
. Notice that h(2) has no harmonic

terms, we can find Z(1)(z) such that ℜ(< z, Z(1)(z) >ℓ) = 0 and ℑ(2 < z, Z(1) >) =
h(2)(z, z). Finally, if we define f = z + X(4)(z, w) + Z(1)(z)w and g(4) = w + Y (4), then
(f, g) maps (M, 0) to a hypersurface with R(z, z, u) = owt(4) ∩ O(|(z, u)|3). Now sup-
pose that the terms with non-weighted degree of 3 or 4 in R are uniquely written as
ub(3)(z, z) + u2ℑ(b(1)(z)) + b(0)u3 + c(0)u4 with b(3)(z, z) = ℑ(c(3)(z) +

∑
|α|=2,|β|=1 dαβz

αzβ).

Then we need to make further change of variables as follows to make R = owt(4)∩o(|(z, u)|
4)

without changing N (4)(z, z):

w′ = w + wc(3)(z) + w2b(1)(z) + ib(0)w3 + ic(0)w4,

z′j = zj + δj,ℓwb
(1)(z)zj +

i

2

∑

|α|=2

wdα,jz
α + δj,ℓ

3i

2
w2zjb

(0).

Now, the trace-free condition in (4) is equivalent to the following condition :

△ℓs(z, z̄) ≡ 0.

Indeed, this follows from the following fact: Let ∆H =
∑n

l,k=1 h
lk∂l∂k with hlk = hkl for any

l, k. Then

∆Hs
0(z, z) = 4

n∑

γ,δ=1

n∑

α,β=1

hαβs0
αβγδ

zγzδ. (5)

This proves the proposition.

We assume the notation and conclusion in Proposition 2.1. The Chern-Moser-Weyl tensor
at p associated with the appropriate 1-form θp is defined as the 4th order tensor Sθp acting

over T
(1,0)
p M⊗T

(0,1)
p M⊗T

(1,0)
p M⊗T

(0,1)
p M . More precisely, for each Xp, Yp.Zp,Wp ∈ T

(1,0)
p M ,

we have the following definition:
Let F be the biholomorphic map sending M near p to the normal form as in Proposition

2.1 with F (p) = 0, and write F∗(Xp) =
∑n

j=1 a
j ∂
∂zj

|0 := X0
p , F∗(Yp) =

∑n
j=1 b

j ∂
∂zj

|0 := Y 0
p ,

F∗(Zp) =
∑n

j=1 c
j ∂
∂zj

|0 := Z0
p , and F∗(Wp) =

∑n
j=1 d

j ∂
∂zj

|0 := W 0
p . Then

Sθp(Xp, Yp, Zp,Wp) :=
n∑

α,β,γ,δ=1

s0
αβγδ

aαbβcγdδ, which is denoted by Sθ0(X
0
p , Y

0
p , Z

0
p ,W

0
p ).

(6)
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Since the normalization map F is not unique, we have to verify that the tensor Sθp is
well-defined. Namely, we need to show that it is independent of the choice of the normal
coordinates. We do this in the next section. For the rest of this section, we assume this fact
and derive some basic properties for the tensor.

For a basis {Xα}
n
α=1 of T

(1,0)
p M with p ∈ M , write (Sθp)αβ̄γδ̄ = Sθp(Xα, Xβ, Xγ, Xδ).

From the definition, we then have the following symmetric properties:

(Sθp)αβ̄γδ̄ = (Sθp)γβ̄αδ̄ = (Sθp)γδ̄αβ̄

(Sθp)αβ̄γδ̄ = (Sθp)βᾱδγ̄ ,

and the following trace-free condition:

n∑

β,α=1

gβ̄α(Sθp)αβ̄γδ̄ = 0. (7)

Here
gαβ̄ = Lθ|p(Xα, Xβ) := −i < (dθ)|p, Xα ∧Xβ > (8)

is the Levi form of M associated with θp and θ is a smooth extension of θp as a proper
contact form of M near p. Also, (gβ̄α) is the inverse matrix of (gαβ̄). In the following, we

write θ̃ = (F−1)∗(θ).
To see the trace-free property in (7), we write that F∗(Xα) =

∑n
k=1 a

k
α

∂
∂zk

|0. Then

gαβ̄ = Lθp(Xα, Xβ) = −i < (dθ)|p, Xα ∧ Xβ >= −i < (dF ∗(θ̃)|p, Xα ∧ Xβ >= −i <

(i∂∂r|0, F∗(Xα) ∧ F∗(Xβ) >= (g0)kla
k
αa

l
β. Here (g0)kl is defined as before. Write G =

(gαβ), G
0 = (g0)αβ, A = (alk), B = A−1 := (blk). Then we have the matrix relation:

G = AG0A
t
. Thus G−1 = (At)−1(G0)−1A−1, from which we have gγβ = bβl (g0)

jlbγj . Thus,

gαβSαβγδ = bβl (g0)
jlbαj s

0

k̃j̃l̃m̃
ak̃αa

j̃
βa

l̃
γa

m̃
δ = (g0)

jls0
jll̃m̃

al̃γa
m̃
δ = 0.

We should mention the above argument can also be easily adapted to show the biholo-
morphic invariance of the appropriateness. Namely, if F is a CR diffeomorphism between
two Levi non-degenerate hypersurfaces M and M̃ of signature ℓ. For θ̃q is an appropriate

contact 1-form at q ∈ M̃ , then F ∗(θ̃q) is also an appropriate contact 1-form at F−1(q) ∈M .
For a smooth vector field X, Y, Z,W of type (1, 0) and an appropriate smooth contact

form along M , Sθ(X, Y , Z,W ) is also a smooth function along M . One easy way to see this
is to use the Webster-Chern-Moser-Weyl formula obtained in [We1] through the curvature
tensor of the Webster pseudo-Hermitian metric, whose constructions are done by only ap-
plying the algebraic and differentiation operations on the defining function of M . Another
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more direct way is to trace the dependence of the tensor on the base points under the above
normalization procedure.

Assume that ℓ > 0 and define

Cℓ = {z ∈ C
n : |z|ℓ = 0}.

Then Cℓ is a real algebraic variety of real codimension 1 in C
n with the only singularity at

0. For each p ∈ M , write CℓT
(1,0)
p M = {vp ∈ T

(1,0)
p M : < (dθ)|p, vp ∧ v̄p >= 0}. Apparently,

ClT
(1,0)
p M is independent of the choice of θp. Let F be a CR diffeomorphism from M to

M ′. We also have F∗(CℓT
(1,0)
p M) = CℓT

(1,0)
F (p)M

′. Write CℓT
(1,0)M =

∐
p∈M CℓT

(1,0)
p M with the

natural projection π toM . We say that X is a smooth section of CℓT
(1,0)M if X is a smooth

vector field of type (1, 0) along M such that X|p ∈ CℓT
(1,0)
p M for each p ∈ M . CℓT

(1,0)M is
a kind of smooth bundle with each fiber isomorphic to Cℓ.

Cℓ is obviously a uniqueness set for holomorphic functions. The following lemma shows
that it is also a uniqueness set for the Chern-Moser-Weyl curvature tensor. (For the proof,
see Lemma 2.1 of [HZh].)

Proposition 2.2 (Huang-Zhang [HZh]) (I). Suppose that H(z, z̄) is a real real-analytic
function in (z, z̄) near 0. Assume that △ℓH(z, z̄) ≡ 0 and H(z, z̄)|Cℓ = 0. Then H(z, z̄) ≡ 0
near 0. (II). Assume the above notation and ℓ > 0. If Sθp(X,X,X,X) = 0 for any

X ∈ CℓT
(1,0)
p M , then Sθ|p ≡ 0.

3 Transformation law for the Chern-Moser-Weyl ten-

sor

We next show that the Chern-Moser-Weyl tensor defined in the previous section is well-
defined by proving a transformation law. We follow the approach and expositions developed
in Huang-Zhang [HZh].

Let M̃ ⊂ CN+1 = {(z, w) ∈ Cn × C} be also a Levi non-degenerate real hypersurface
near 0 of signature ℓ ≥ 0 defined by an equation of the form:

r̃ = ℑw̃ − |z̃|2ℓ + o(|z̃|2 + |z̃ũ|) = 0. (9)
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Let F := (f1, . . . , fn, φ, g) : M → M̃ be a smooth CR diffeomorphism. Then, as in [Hu1]
and [BH], we can write

z̃ = f̃(z, w) = (f1(z, w), . . . , fn(z, w)) = λzU + ~aw +O(|(z, w)|2)

w̃ = g(z, w) = σλ2w +O(|(z, w)|2).
(10)

Here U ∈ SU(n, ℓ). (Namely < XU, Y U >ℓ=< X, Y >ℓ for any X, Y ∈ Cn). Moreover,
~a ∈ Cn, λ > 0 and σ = ±1 with σ = 1 for ℓ < n

2
. When σ = −1, by considering F ◦ τn/2

instead of F , where τn
2
(z1, . . . , zn

2
, zn

2
+1, . . . , zn, w) = (zn

2
+1, . . . , zn, z1, . . . , zn

2
,−w), we can

make σ = 1. Hence, we will assume in what follows that σ = 1.
Write r0 =

1
2
ℜ{g

′′

ww(0)}, q(z̃, w̃) = 1 + 2i < z̃, λ−2~a >ℓ +λ
−4(r0 − i|~a|2ℓ)w̃,

T (z̃, w̃) =
(λ−1(z̃ − λ−2~aw̃)U−1, λ−2w̃)

q(z̃, w̃)
. (11)

Then
F ♯(z, w) = (f̃ ♯, g♯)(z, w) := T ◦ F (z, w) = (z, w) +O(|(z, w)|2) (12)

with ℜ{g♯
′′

ww(0)} = 0.

Assume that M̃ is also defined in the Chern-Moser normal form up to the 4th order:

r̃ = ℑw̃ − |z̃|2ℓ +
1

4
s̃(z̃, ¯̃z) + owt(|(z̃, ũ)|

4) = 0. (13)

Then M ♯ = T (M̃) is defined by

r♯ = ℑw♯ − |z♯|2ℓ +
1

4
s♯(z♯, z̄♯) + owt(|(z

♯, w♯)|4) = 0 (14)

with s♯(z♯, z̄♯) = λ−2s̃(λz♯U, λz♯U).
One can verify that

(−
ℓ∑

j=1

∂2

∂z♯j∂z̄
♯
j

+
N∑

j=ℓ+1

∂2

∂z♯j∂z̄
♯
j

)s♯(z♯, z♯) = 0. (15)

Therefore (14) is also in the Chern-Moser normal form up to the 4th order. Write F ♯(z, w) =∑∞
k=1 F

♯(k)(z, w). Since F ♯ maps M into M ♯ = T (M̃), we get the following

ℑ{
∑

k≥2

g♯(k+1)(z, w)− 2i
∑

k≥2

< f ♯(k)(z, w), z̄ >ℓ}

=
∑

k1, k2≥2

< f ♯(k1)(z, w), f ♯(k2)(z, w) >ℓ +
1

4
(s(z, z̄)− s♯(z, z)) + owt(4)

(16)

8



over ℑw = |z|2ℓ . Here, we write F ♯(z, w) = (f ♯(z, w), g♯(z, w)).
Collecting terms of weighted degree 3 in (16), we get

ℑ{g♯(3)(z, w)− 2i < f ♯(2)(z, w), z̄ >ℓ} = 0 on ℑw = |z|2ℓ .

By [Hu1], we get g♯(3) ≡ 0, f ♯(2) ≡ 0.
Collecting terms of weighted degree 4 in (16), we get

ℑ{g♯(4)(z, w)− 2i < f ♯(3)(z, w), z̄ >ℓ} =
1

4
(s(z, z̄)− s♯(z, z)).

Similar to the argument in [Hu1] and making use of the fact that ℜ{∂2g♯(4)

∂w2 (0)} = 0, we get
the following:

g♯(4) ≡ 0, f ♯(3)(z, w) =
i

2
a(1)(z)w,

< a(1)(z), z̄ >ℓ |z|
2
ℓ =

1

4
(s(z, z̄)− s♯(z, z)) =

1

4
(s(z, z̄)− λ−2s̃(λzU, λzU )).

(17)

Since the right hand side of the above equation is annihilated by ∆ℓ and the left hand side
of the above equation is divisible by |z|2ℓ . We conclude that f ♯(3)(z, w) = 0 and

s(z, z̄) = λ−2s̃(λzU, λzU). (18)

Write θ0 = i∂r|0 and θ̃0 = i∂r̃|0. Then F ∗(θ̃0) = λ2θ0. For any X =
∑n

j=1 zj
∂
∂zj

|0,

F∗(X) = λ(z1
∂

∂z̃1
|0, · · · , zn

∂
∂z̃n

|0)U. Under this notation, (19) can be written as

S0
F ∗(θ̃0)

(X,X,X,X) = S0
θ̃0
(F∗(X), F∗(X), F∗(X), F∗(X)).

This immediately gives the following transformation law and thus the following theorem,
too.

S0
F ∗(θ̃0)

(X, Y , Z,W ) = S0
θ̃0
(F∗(X), F∗(Y ), F∗(Z), F∗(W )), for X, Y, Z,W ∈ T

(1,0)
0 M. (19)

Theorem 3.1 (1). The Chern-Moser-Weyl tensor defined in the previous section is in-
dependent of the choice of the normal coordinates and thus is a well-defined fourth order
tensor. (2). Let F be a CR diffeomorphism between two Levi non-degenerate hypersurfaces

M,M ′ ⊂ Cn+1. Suppose F (p) = q. Then, for any appropriate contact 1-form θ̃q of M̃ at q

9



and a vector v ∈ T
(1,0)
p M, we have the following transformation formula for the corresponding

Chern-Moser-Weyl tensor:

S̃θ̃p
(F∗(v1), F∗(v2), F∗(v3), F∗(v4)) = SF ∗(θ̃q)

(v1, v2, v3, v4). (20)

Proof: Let θp be an appropriate contact form of M at p, and let F1, F2 be two nor-
malization (up to fourth order) of M at p. Suppose that F1(M) and F2(M) are defined
near 0 by equations r1 = 0 and r2 = 0 as in (1), respectively. Write Φ = F2 ◦ F

−1
1 and

θ10 = i∂r1, θ
2
0 = i∂r2. We also assume that F ∗

1 (θ
1
0) = θp and F ∗

2 (θ
2
0) = θp. Then for any

Xp, Yp, Zp,Wp ∈ T
(1,0)
p M , we have

S1
θp(Xp, Yp, Zp,Wp) = S1

θ10
((F1)∗(Xp), (F1)∗(Yp), (F1)∗(Zp), (F1)∗(Wp))

if we define the tensor at p by applying F2. We also have

S2
θp(Xp, Yp, Zp,Wp) = S2

θ20
((F2)∗(Xp), (F2)∗(Yp), (F2)∗(Zp), (F2)∗(Wp)),

if we define the tensor at p by applying F2. Since θ20 = Φ∗(θ10), and Φ∗((F1)∗(Xp)) =
(F2)∗(Xp), by the transformation law obtained in (19), we see the proof in Part I of the
theorem. The proof in Part II of the theorem also follows easily from the formula in (19).

4 A monotonicity theorem for the Chern-Moser-Weyl

tensor

We now let Mℓ ⊂ Cn+1 be a Levi non-degenerate hypersurface with signature ℓ > 0 defined
in the normal form as in (3). Let F = (f1, · · · , fN , g) be a CR-transversal CR embedding
from Mℓ into H

N+1
ℓ with N ≥ n. Then again as in Section 3, a simple linear algebra

argument ([HZh]) shows that after a holomorphic change of variables, we can make F into
the following preliminary normal form:

z̃ = f̃(z, w) = (f1(z, w), . . . , fN(z, w)) = λzU + ~aw +O(|(z, w)|2)

w̃ = g(z, w) = σλ2w +O(|(z, w)|2).
(21)

Here U can be extended to an N ×N matrix Ũ ∈ SU(N, ℓ). Moreover, ~a ∈ CN , λ > 0 and
σ = ±1 with σ = 1 for ℓ < n

2
. When σ = −1, qs discussed before, by considering F ◦ τn/2
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instead of F , where τn
2
(z1, . . . , zn

2
, zn

2
+1, . . . , zn, w) = (zn

2
+1, . . . , zn, z1, . . . , zn

2
,−w), we can

make σ = 1. Hence, we will assume that σ = 1.
Write r0 =

1
2
ℜ{g

′′

ww(0)}, q(z̃, w̃) = 1 + 2i < z̃, λ−2~a >ℓ +λ
−4(r0 − i|~a|2ℓ)w̃,

T (z̃, w̃) =
(λ−1(z̃ − λ−2~aw̃)Ũ−1, λ−2w̃)

q(z̃, w̃)
. (22)

Then
F ♯(z, w) = (f̃ ♯, g♯)(z, w) := T ◦ F (z, w) = (z, 0, w) +O(|(z, w)|2) (23)

with ℜ{g♯
′′

ww(0)} = 0. Now, T (HN+1
ℓ ) = H

N+1
ℓ . With the same argument as in the previous

section, we also arrive at the following:

g♯(3) = g♯(4) ≡ 0, f ♯(3)(z, w) =
i

2
a(1)(z)w,

< a(1)(z), z̄ >ℓ |z|
2
ℓ = |φ♯(2)(z)|2+

1

4
s(z, z̄).

(24)

In the above equation, if we let z be such that |z|ℓ = 0, we see that s(z, z) ≤ 0. Now, if
F is not CR transversal but not totally non-degenerate in the sense that F does not map
an open subset of Cn into HN

ℓ (see [HZh]), then one can apply this result on a dense open
subset of M [BER] where F is CR transversal and then take a limit as did in [HZh]. Then
we have the following special case of the monotonicity theorem for the Chern-Moser-Weyl
tensor obtained in Huang-Zhang [HZh]:

Theorem 4.1 ([HZh]) Let Mℓ ⊂ Cn+1 be a Levi non-degenerate real hypersurface of signa-
ture ℓ. Suppose that F is a holomorphic mapping defined in a (connected) open neighborhood
U of M in Cn+1 that sends Mℓ into HN+1

ℓ ⊂ CN+1. Assume that F (U) 6⊂ HN+1
ℓ . Then

when ℓ < n
2
, the Chern-Moser-Weyl curvature tensor with respect to any appropriate contact

form θ is pseudo semi-negative in the sense that for any p ∈M , the following holds:

Sθ|p(vp, vp, vp, vp) ≤ 0, for vp ∈ CℓT
(1,0)
p M. (25)

When ℓ = n
2
, along a certain contact form θ, Sθ is pseudo negative.

5 Counter-examples to the embeddability problem for

compact algebraic Levi non-degenerate hypersurfaces

with positive signature into hyperquadrics

In this section, we apply Theorem 4.1 to construct a compact Levi-nondegenerate hypersur-
face in a projective space, for which any piece of it can not be holomorphically embedded
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into a hyperquadric of any dimension with the same signature. This section is based on the
work in the last section of Huang-Zaitsev [HZa].

Let n, ℓ be two integers with 1 < ℓ ≤ n/2. For any ǫ, define

Mǫ :=

{
[z0, · · · , zn+1] ∈ P

n+1 : |z|2

(
−

ℓ∑

j=0

|zj|
2 +

n+1∑

j=ℓ+1

|zj|
2

)
+ ǫ
(
|z1|

4 − |zn+1|
4
)
= 0

}
.

Here |z|2 =
∑n+1

j=0 |zj |
2 as usual. For ǫ = 0, Mǫ reduces to the generalized sphere with

signature ℓ, which is the boundary of the generalized ball

B
n+1
ℓ :=

{
{[z0, · · · , zn+1] ∈ P

n+1 : −

ℓ∑

j=0

|zj|
2 +

n+1∑

j=ℓ+1

|zj |
2 < 0

}
.

The boundary ∂Bn+1
ℓ is locally holomorphically equivalent to the hyperquadric Hn+1

ℓ ⊂ Cn+1

of signature ℓ defined by ℑzn+1 = −
∑ℓ

j=1 |zj|
2 +

∑n+1
j=ℓ+1 |zj |

2, where (z1, · · · , zn+1) is the

coordinates of Cn+1.
For 0 < ǫ << 1, Mǫ is a compact smooth real-algebraic hypersurface with Levi form

non-degenerate of the same signature ℓ.

Theorem 5.1 ([HZa]) There is an ǫ0 > 0 such that for 0 < ǫ < ǫ0, the following holds:
(i) Mǫ is a smooth real-algebraic hypersurface in Pn+1 with non-degenerate Levi form of
signature ℓ at every point. (ii) There does not exist any holomorphic embedding from any
open piece of Mℓ into H

N+1
ℓ .

When 0 < ǫ << 1, since Mǫ is a small algebraic deformation of the generalzied sphere,
we see that Mǫ must also be a compact real-algebraic Levi non-degenerate hypersurface in
P
n+1 with signature ℓ diffeomorphic to the generalized sphere which is the boundary of the

generalized ball Bn+1
ℓ ⊂ Pn+1.

Proof of Theorem 5.1: The proof uses the following algebraicity of the first author:

Theorem 5.2 (Hu2, Corollary in §2.3.5) Let M1 ⊂ Cn and M2 ⊂ CN with N ≥ n ≥ 2
be two Levi non-degenerate real-algebraic hypersurfaces. Let p ∈ M1 and Up be a small
connected open neighborhood of p in Cn and F be a holomorphic map from Up into CN such
that F (Up ∩M1) ⊂M2 and F (Up) 6⊂M2. Suppose that M1 and M2 have the same signature
ℓ at p and F (p), respectively. Then F is algebraic in the sense that each component of F
satisfies a nontrivial holomorphic polynomial equation.
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Next, we compute the Chern-Moser-Weyl tensor of Mǫ at the point

P0 := [ξ00 , · · · , ξ
0
n+1], ξ0j = 0 for j 6= 0, ℓ+ 1, ξ00 = 1, ξ0ℓ+1 = 1,

and consider the coordinates

ξ0 = 1, ξj =
ηj

1 + σ
, j = 1, · · · , ℓ, ξℓ+1 =

1− σ

1 + σ
, ξj+1 =

ηj
1 + σ

, j = ℓ+ 1, · · · , n.

Then in the (η, σ)-coordinates, P0 becomes the origin and Mǫ is defined near the origin by
an equation in the form:

ρ = −4ℜσ −

ℓ∑

j=1

|ηj|
2 +

n∑

j=ℓ+1

|ηj |
2 + a(|η1|

4 − |ηn|
4) + o(|η|4) = 0, (26)

for some a > 0. Now, let Q(η, η) = −a(|η1|
4 − |ηn|

4) and make a standard ℓ-harmonic
decomposition [SW]:

Q(η, η) = N (2,2)(η, η) + A(1,1)(η, η)|η|2ℓ . (27)

Here N (2,2)(η, η) is a (2, 2)-homogeneous polynomial in (η, η) such that ∆ℓN
(2,2)(η, η) = 0

with ∆ℓ as before. Now N (2,2) is the Chern-Moser-Weyl tensor of Mǫ at 0 (with respect to

an obvious contact form) with N (2,2)(η, η) = Q(η, η) for any η ∈ CT
(1,0)
0 Me. Now the value

of the Chern-Moser-Weyl tension has negative and positive value at X1 =
∂

∂η1
+ ∂

∂ηℓ+1
|0 and

X2 = ∂
∂η2

+ ∂
∂ηn

|0, respectively. If ℓ > 1, then both X1 and X2 are in CT
(1,0)
0 Me. We see

that the Chern-Moser-Weyl tensor can not be pseudo semi-definite near the origin in such
a coordinate system.

Next, suppose an open piece U ofMǫ can be holomorphically and transversally embedded
into the HN+1

ℓ for N > n by F . Then by the algebraicity result in Theorem 5.2, F is
algebraic. Since the branching points of F and the points where F is not defined (poles or
points of indeterminancy of F ) are contained in a complex-algebraic variety of codimension
at most one, F extends holomorphically along a smooth curve γ starting from some point
in U and ending up at some point p∗(≈ 0) ∈Mℓ in the (η, σ)-space where the Chern-Moser-
Weyl tensor of Mǫ is not pseudo-semi-definite. By the uniqueness of real-analytic functions,
the extension of F must also map an open piece of p∗ into HN+1

ℓ . The extension is not
totally degenerate. By Theorem 4.1, we get a contradiction.

13



6 Non-embeddability of compact strongly psuedo-convex

real algebraic hypersurfaces into spheres

As discussed in the previous sections, spheres serve as the model of strongly pseudoconvex
real hypersurfaces where the Chern-Moser-Weyl tensor vanishes. An immediate applica-
tion of the invariant property for the Chern-Moser-Weyl tensor is that very rare strongly
pseudoconvex real hypersurfaces can be biholomorphically mapped to a unit sphere. Moti-
vated by various embedding theorems in geometries (Nash embedding, Remmert embedding
theorems, etc), a natural question to pursue in Several Complex Variables is to determine
when a real hypersurface in Cn can be holomorphically embedded into the unit sphere
S2N−1 = {Z ∈ CN : ||Z||2 = 1}.

By a holomorphic embedding of M ⊂ Cn into M ′ ⊂ CN , we mean a holomorphic
embedding of an open neighborhood U of M into a neighborhood U ′ of M ′, sending M into
M ′. We also say M is locally holomorphically embeddable into M ′ at p ∈ M , if there is a
neighborhood V of p and a holomorphic embedding F : V → CN sending M ∩ V into M ′.

A real hypersurface holomorphically embeddable into a sphere is necessarily strongly
pseudoconvex and real-analytic. However, due to results by Forstnerić [For1] (See a recent
work [For2] for further result) and Faran [Fa], not every strongly pseudoconvex real-analytic
hypersurface can be embedded into a sphere. Explicit examples of non-embeddable strongly
pseudoconvex real-analytic hypersurfaces constructed much later in [Za1]. Despite a vast
of literature devoted to the embeddability problem, the following question remains an open
question of long standing. Here recall a smooth real hypersurface in an open subset U of Cn

is called real-algebraic, if it has a real-valued polynomial defining function.

Question 6.1 Is every compact real-algebraic strongly pseudoconvex real hypersuraface in
C

n holomorphically embeddable into a sphere of sufficiently large dimension?

Part of the motivation to study this embeddability problem is a well-known result due to
Webster [We2] which states that every real-algebraic Levi-nondegenerate hypersurface ad-
mits a transversal holomorphic embedding into a non-degenerate hyperquadric in sufficiently
large complex space. (See also [KX] for further study along this line.) Notice that in [HZa],
the authors showed that there are many compact real-algebraic pseudoconvex real hyper-
surfaces with just one weakly pseudoconvex point satisfying the following property: Any
open piece of them cannot be holomorphically embedded into any compact real-algebraic
strongly pseudoconvex hypersurfaces which, in particular, includes spheres. Many other
related results can be found in the work of Ebenfelt-Son [ES], Fornaess [Forn], etc.

In [HLX], the authors constructed the following family of compact real-algebraic strongly
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pseudoconvex real hypersurfaces:

Mǫ = {(z, w) ∈ C
2 : ε0(|z|

8 + cRe|z|2z6) + |w|2 + |z|10 + ǫ|z|2 − 1 = 0}, 0 < ǫ < 1. (28)

Here, 2 < c < 16
7
, ε0 > 0 is a sufficiently small number such that Mε is smooth for all

0 ≤ ǫ < 1. An easy computation shows that for any 0 < ǫ < 1,Mǫ is strongly pseudoconvex.
Mǫ is indeed a small algebraic deformation of the boundary of the famous Kohn-Nirenberg
domain [KN]. It is shown in [HLX] that for any integer N, there exists a small number
0 < ǫ(N) < 1, such that for any 0 < ǫ < ǫ(N), Mǫ cannot be locally holomorphically
embedded into the unit sphere S2N−1 in CN . More precisely, any holomorphic map sending
an open piece of Mǫ to S2N−1 must be a constant map. We will write

ρǫ = ρǫ(z, w, z, w) := ε0(|z|
8 + cRe|z|2z6) + |w|2 + |z|10 + ǫ|z|2 − 1.

We first fix some notations. Let M ⊂ Cn be a real-algebraic subset defined by a family
of real-valued polynomials {ρα(Z,Z) = 0}, where Z is the coordinates of Cn. Then the
complexification M ofM is the complex-algbraic subset in Cn×Cn defined by ρα(Z,W ) = 0
for each α, (Z,W ) ∈ Cn × Cn. Then for p ∈ Cn, the Segre variety of M associated with the
point p is defined by Qp := {Z ∈ Cn : (Z, p) ∈ M}. The geometry of Segre varieties of a
real-analytic hypersurface has been used in many literatures since the work of Segre [S] and
Webster [We].

In this note, fundamentally based on our previous joint work with Li [HLX], we show that
Mǫ cannot be locally holomorphically embedded into any unit sphere. The other important
observation we need is the fact that for some p ∈ Mǫ, the associated Segre variety Qp cuts
Mǫ along a one dimensional real analytic subvariety inside Mǫ. The geometry related to
intersection of the Segre variety with the boundary plays an important role in the study
of many problems in Several Complex Variables. (We mention, in particular, the work of
D’Angelo-Putinar [DP], Huang-Zaitsev [HZa]).

This then provides a counter-example to a long standing open question— Question 6.1.
(See [HZa] for more discussions on this matter).

Theorem 6.2 There exist compact real-algebraic strongly pseudoconvex real hypersurfaces
in C

2, diffeomorphic to the sphere, that are not locally holomorphically embeddable into any
sphere. In particular, for sufficiently small positive ε0, ǫ,Mǫ cannot be locally holomorphically
embedded into any sphere. More precisely, a local holomorphic map sending an open piece
of Mǫ to a unit sphere must be a constant map.

Write Dǫ = {ρǫ < 0} as the interior domain enclosed by Mǫ. Since Mǫ is a small smooth
deformation of {|z|10 + |w|2 = 1} for small ε0 and ǫ. This imples Mǫ is diffeomorphic to
the unit sphere S3 for sufficiently small ε0 and ǫ. Consequently, Mǫ separates C2 into two
connected components Dǫ and C2 \Dǫ.
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Proposition 6.3 Let p0 = (0, 1) ∈Mǫ. Let Qp0 be the Segre variety of Mǫ associated to p0.
There exists ǫ̃ > 0 such that for each 0 < ǫ < ǫ̃, Qp0 ∩Mǫ is a real analytic subvariety of
dimension one.

Proof of Proposition 6.3: It suffices to show that there exists q ∈ Qp0 such that q ∈ Dǫ.
Note that Qp0 = {(z, w) : w = 1}. Set

ψ(z, ǫ) = ε0(|z|
8 + cRe|z|2z6) + |z|10 + ǫ|z|2, 0 ≤ ǫ < 1.

Note q = (µ0, 1) ∈ Dǫ if and only if ψ(µ0, ǫ) < 0. Now, set φ(λ, ǫ) = ε0λ
8(1−c)+λ10+ǫλ2, 0 ≤

ǫ < 1. First we note there exists small λ′ > 0, such that φ(λ′, 0) < 0. Consequently, we can
find ǫ̃ > 0 such that for each 0 < ǫ ≤ ǫ̃, φ(λ′, ǫ) < 0. Write µ0 = λ′ei

π
6 . It is easily to see that

ψ(µ0, ǫ) < 0 if 0 < ǫ ≤ ǫ̃. This establishes Proposition 6.3.

Proposition 6.4 Let M := {Z ∈ Cn : ρ(Z,Z) = 0}, n ≥ 2, be a compact, connected,
strongly pseudo-convex real-algebraic hypersurface. Assume that there exists a point p ∈ M
such that the associated Segre variety Qp ofM is irreducible and Qp intersectsM at infinitely
many points. Let F be a holomorphic rational map sending an open piece of M to the unit
sphere S2N−1 in some CN . Then F is a constant map.

Proof of Proposition 6.4: Let D be the interior domain enclosed by M. From the as-
sumption and a theorem of Chiappari [Ch], we know F is holomorphic in a neighborhood
U of D and sends M to S2N−1. Consequently, if we write S as the singular set of F , then
it does not intersect U . Write Q′

q for the Segre variety of S2N−1 associated to q ∈ CN . We
first conclude by complexification that for a small neighborhood V of p,

F (Qp ∩ V ) ⊂ Q′
F (p). (29)

Note that S ∩Qp is a Zariski close proper subset of Qp. Notice that Qp is connected as it is
irreducible. We conclude by unique continuation that if p̃ ∈ Qp and F is holomorphic at p̃,
then F (p̃) ∈ Q′

F (p). In particular, if p̃ ∈ Qp ∩M, then F (p̃) ∈ Q′
F (p) ∩ S2N−1 = {F (p)}. That

is, F (p̃) = F (p).

Notice by assumption that Qp ∩M is a compact set and contains infinitely many points.
Let p̂ be an accumulation point of Qp ∩ M. Clearly, by what we argued above, F is not
one-to-one in any neighborhood of p̂. This shows that F is constant. Indeed, suppose F
is not a constant map. We then conclude that F is a holomorphic embedding near p̂ by a
standard Hopf lemma type argument (see [Hu2], for instance) for both Mǫ and S2N−1 are
strongly pseudo-convex. This completes the proof of Proposition 6.4.
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Proof of Theorem 6.2: Pick p0 = (0, 1) ∈ Mǫ. Notice that the associated Segre variety
Qp0 = {(z, 1) : z ∈ C} is an irreducible complex variety in C2. Let ǫ, ε0 be sufficiently small
such that Proposition 6.3 holds.

Now, let F be a holomorphic map defined in a small neighborhood U of some point
q ∈Mǫ that sends an open piece of Mǫ into S2N−1, N ∈ N. It is shown in [HLX] that F is a
rational map. Then it follows from Proposition 6.4 that F is a constant map. We have thus
established Theorem 6.2.
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